- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Lyra, Wladimir (2)
-
Simon, Jacob_B (2)
-
Yang_楊, Chao-Chin_朝欽 (2)
-
Youdin, Andrew_N (2)
-
Carrera, Daniel (1)
-
Lesur, Geoffroy (1)
-
Rea, David_G (1)
-
Sengupta, Debanjan (1)
-
Umurhan, Orkan_M (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Disk vortices, seen in numerical simulations of protoplanetary disks and found observationally in Atacama Large Millimeter/submillimeter Array and Very Large Array images of these objects, are promising sites for planet formation given their pebble trapping abilities. Previous works have shown a strong concentration of pebbles in vortices, but gravitational collapse has only been shown in low-resolution, two-dimensional, global models. In this Letter, we aim to study the pebble concentration and gravitational collapse of pebble clouds in vortices via high-resolution, three-dimensional, local models. We performed simulations of the dynamics of gas and solids in a local shearing box where the gas is subject to convective overstability, generating a persistent giant vortex. We find that the vortex produces objects of Moon and Mars mass, with a mass function of power-law . The protoplanets grow rapidly, doubling in mass in about five orbits, following pebble accretion rates. The mass range and mass doubling rate are in broad agreement with previous low-resolution global models. We conclude that Mars-mass planetary embryos are the natural outcome of planet formation inside the disk vortices seen in millimeter and radio images of protoplanetary disks.more » « less
-
Rea, David_G; Simon, Jacob_B; Carrera, Daniel; Lesur, Geoffroy; Lyra, Wladimir; Sengupta, Debanjan; Yang_楊, Chao-Chin_朝欽; Youdin, Andrew_N (, The Astrophysical Journal)Abstract Given the important role turbulence plays in the settling and growth of dust grains in protoplanetary disks, it is crucial that we determine whether these disks are turbulent and to what extent. Protoplanetary disks are weakly ionized near the midplane, which has led to a paradigm in which largely laminar magnetic field structures prevail deeper in the disk, with angular momentum being transported via magnetically launched winds. Yet, there has been little exploration of the precise behavior of the gas within the bulk of the disk. We carry out 3D, local shearing box simulations that include all three low-ionization effects (ohmic diffusion, ambipolar diffusion, and the Hall effect) to probe the nature of magnetically driven gas dynamics 1–30 au from the central star. We find that gas turbulence can persist with a generous yet physically motivated ionization prescription (order unity Elsässer numbers). The gas velocity fluctuations range from 0.03 to 0.09 of the sound speedcsat the disk midplane to ∼csnear the disk surface, and are dependent on the initial magnetic field strength. However, the turbulent velocities do not appear to be strongly dependent on the field polarity, and thus appear to be insensitive to the Hall effect. The midplane turbulence has the potential to drive dust grains to collision velocities exceeding their fragmentation limit, and likely reduces the efficacy of particle clumping in the midplane, though it remains to be seen if this level of turbulence persists in disks with lower ionization levels.more » « less
An official website of the United States government
